Geminin overexpression-dependent recruitment and crosstalk with mesenchymal stem cells enhance aggressiveness in triple negative breast cancers
نویسندگان
چکیده
Resident mesenchymal stem cells (MSCs) promote cancer progression. However, pathways and mechanisms involved in recruiting MSCs into breast tumors remain largely undefined. Here we show that geminin-dependent acetylation releases HMGB1 from the chromatin to the cytoplasm and extracellular space. Extracellular acetylated HMGB1 (Ac-HMGB1) promotes geminin overexpressing (GemOE) cells survival by binding to RAGE and activating NF-κB signaling. Extracellular Ac-HMGB1 also triggers expression and activation of RAGE in the non-expressing MSCs. RAGE activation induces expression of CXCR4 in MSCs and directional migration towards SDF1 (aka CXCL12)-expressing GemOE cells in vitro and in vivo. These effects augmented by the necrotic and hypoxic environment in GemOE tumors, especially within their cores. Reciprocal interactions between newly recruited MSCs and GemOE tumor cells elevate tumor-initiating (TIC), basal and epithelial-to-mesenchymal transition (EMT) traits and enhance aggressiveness in vitro and in vivo in GemOE tumor cells. Indeed, faster, larger and more aggressive tumors develop when GemOE cells are co-injected with MSCs in orthotopic breast tumor model. Concurrently, inhibiting c-Abl (and thus geminin function), RAGE or CXCR4 prevented MSCs recruitment to GemOE cells in vitro and in vivo, and decreased the TIC, basal and EMT phenotypes in these tumor cells. Accordingly, we propose that GemOE tumor cells present within tumor cores represent metastatic precursors, and suppressing the GemOE→HMGB1/RAGE→SDF1/CXCR4 signaling circuit could be a valid target for therapies to inhibit GemOE tumors and their metastases.
منابع مشابه
Overexpression of Cell Cycle Progression Inhibitor Geminin is Associated with Tumor Stem-Like Phenotype of Triple-Negative Breast Cancer
PURPOSE Triple-negative breast cancer, has a significant clinical relevance being associated with a shorter median time to relapse and death and does not respond to endocrine therapy or other available targeted agents. For this reason, identifying the molecular pathways associated with increased aggressiveness, for example the presence of stem cell populations within the tumor and alteration of...
متن کاملGeminin Overexpression Promotes Imatinib Sensitive Breast Cancer: A Novel Treatment Approach for Aggressive Breast Cancers, Including a Subset of Triple Negative
Breast cancer is the second leading cause of cancer-related deaths in women. Triple negative breast cancer (TNBC) is an aggressive subtype that affects 10-25% mostly African American women. TNBC has the poorest prognosis of all subtypes with rapid progression leading to mortality in younger patients. So far, there is no targeted treatment for TNBC. To that end, here we show that c-Abl is one of...
متن کاملInhibition of Bone Marrow-Derived Mesenchymal Stem Cells Homing Towards Triple-Negative Breast Cancer Microenvironment Using an Anti-PDGFRβ Aptamer
Bone marrow-derived mesenchymal stem cells (BM-MSCs) are shown to participate in tumor progression by establishing a favorable tumor microenvironment (TME) that promote metastasis through a cytokine networks. However, the mechanism of homing and recruitment of BM-MSCs into tumors and their potential role in malignant tissue progression is poorly understood and controversial. Here we show that B...
متن کاملHypoxia-inducible factor-dependent signaling between triple-negative breast cancer cells and mesenchymal stem cells promotes macrophage recruitment.
Intratumoral hypoxia induces the recruitment of stromal cells, such as macrophages and mesenchymal stem cells (MSCs), which stimulate invasion and metastasis by breast cancer cells (BCCs). Production of macrophage colony-stimulating factor 1 (CSF1) by BCCs is required for macrophage recruitment, but the mechanisms underlying CSF1 expression have not been delineated. Triple-negative breast cance...
متن کاملTP53 Mutation, Epithelial-Mesenchymal Transition, and Stemlike Features in Breast Cancer Subtypes
Altered p53 protein is prevalently associated with the pathologic class of triple-negative breast cancers and loss of p53 function has recently been linked to the induction of an epithelial-mesenchymal transition (EMT) and acquisition of stemness properties. We explored the association between TP53 mutational status and expression of some genes involved in the canonical TGF-β signaling pathway ...
متن کامل